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Content Outline
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• Adding more covariates

• Assumptions needed for inference

The Estimator:

• Relation to Single Linear Regression Estimator

• Asymptotic Dsitribution
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• Hypothesis Tests and Linear Combinations

• Confidence Inervals

Modeling Choices:

• Polynomial Equations, transformations, and interactions

• R2 and goodness of fit
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The Model: Introduction

So far we have used the model Y = β0 + β1X + ε defined by the line of best fit
parameters

β0, β1 = arg min
β̃0,β̃1

E
[(
Y − β̃0 − β̃1X

)2]
.

to learn about the relationship between a single random variable X and Y and to
use X to predict Y .

Examples:

• Using education to predict income or interpreting the coeffecient β̂1 to learn
about the relationship between the two.

• Learning about the relationship between smoking and heart disease.
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The Model: Introduction

However, what happens if we have access to multiple explanatory variables
X1, . . . , Xp?

Examples:

• Suppose we wanted to impact the joint effect of education and experience on
income?

• Learn about the relationship between smoking, genetic risk, and heart disease
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The Model: Introduction

As before, we may be interested in the parameters of a “line of best fit” between Y
and our explantory variables X1, . . . , Xp:

β0, β1, . . . , βp = arg min
b0,...,bp

E
[
(Y − b0 − b1X1 − b2X2 − · · · − bpXp)2

]
.

Again defining ε = Y − β0 − β1X1 − · · · − βpXp these parameters generate the
linear model

Y = β0 + β1X1 + · · ·+ βpXp + ε

where, by the first order conditions for β, E[ε] = E[εXj ] = 0 for all j = 0, 1, . . . , p.
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The Model: Introduction

Example 1: Let Y be log wages, EDU be years of college education, and EXP be
years of experience. Prior to this we have estimated the equation

Y = β0 + β1EDU + ε. (1)

Now, we will consider estimation and inference on the model

Y = β0 + β1EDU + β2EXP + ε. (2)

Note that β0, β1 in model (1) will differ from β0, β1 in model (2).

• In (1) β0 corresponds to the average log wage for someone with no college
education

• In (2) β0 will correspond to the average log wage for someone with no college
education and no experience

• In (1) β1 corresponds to the expected change in log wage for an additional
year of college education

• In (2) β1 corresponds to the expected change in log wage for an additional
year of college education after controlling for years of experience
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The Model: Introduction

Example 2: Let Y be the (log) final sales price of a home, SQFT be the square
footage of the house, and DAY S be the number of days the house has been on
the market. Before we estimated and interpreted the linear model:

Y = β0 + β1SQFT + ε. (3)

Now, we will consider estimation and inference on the model

Y = β0 + β1SQFT + β2DAY S + ε (4)

• In (3) β0 is interpreted as the average log sales price for a home with zero
square feet (an empty lot) regardless of how long it’s been on the market.

• In (4) β0 is interpreted as the average log sales price for a home with zero
square feet that has just entered the market

• In (3) β1 is interpeted as the average change in log sales price for a one unit
increase in square footage

• In (4) β1 is interpreted as the average change in log sales price for a one unit
increase in square footage, holding the number of days on the market constant
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The Model: Introduction

Example 3: Finally, let’s return to an example from Week 1. Let Y be a measure of
anxiety levels, ENG be the number of energy drinks consumed per day, and CLS
be the number of courses being taken. Before we may have estimated the model:

Y = β0 + β1ENG+ ε (5)

Now, we may consider the model

Y = β0 + β1ENG+ β2CLS + ε (6)

• In (5) we can interpret β1 as the expected change in anxiety levels for
someone who drinks one more energy drink per day

• In (6) we can interpret β1 as the expected change in anxiety levels for an
additional energy drink holding the number of courses being taken constant.
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The Model: Introduction
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be the number of courses being taken. Before we may have estimated the model:

Y = β0 + β1ENG+ ε (5)

Now, we may consider the model

Y = β0 + β1ENG+ β2CLS + ε (6)

• In (5) we can interpret β1 as the expected change in anxiety levels for
someone who drinks one more energy drink per day

• In (6) we can interpret β1 as the expected change in anxiety levels for an
additional energy drink holding the number of courses being taken constant.

Question: How may we expect the signs/magnitutes of the parameters to change
when going from model (5) to model (6)?

Manu Navjeevan (UCLA) Econ 103: Multiple Linear Regression I 9 / 67



The Model: Questions

Questions?
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Estimation: Introduction

Before, in single linear regression when we were interested in the population line of
best fit parameters

β0, β1 = arg min
b0,b1

E
[
(Y − b0 − b1X)2

]
,

we estimated them by finding the line of best fit through our sample {Yi, Xi}ni=1 :

β̂0, β̂1 = arg min
b0,b1

1

n

n∑
i=1

(Yi − b0 − b1Xi)2.

→ Have to estimate these parameters using the sample because we don’t know the
population distribution of (Y,X)
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Estimation: Introduction

Now, we are interested in the population line of best fit parameters:

β0, β1, . . . , βp = arg min
b0,b1,...,bp

E
[
(Y − b0 − b1X1 − · · · − bpXp)2

]
.

Question: How should we estimate these using our sample {Yi, X1,i, . . . , Xp,i}ni=1?

Estimate β0, . . . , βp by finding the line of best fit through our sample:

β̂0, β̂1, . . . , β̂p = arg min
b0,b1,...,bp

1

n

n∑
i=1

(Yi − b0 − b1X1,i − · · · − bpXp,i)2.
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Estimation: Introduction

Taking first order conditions for β̂0, . . . , β̂p above gives us

∂

∂b0
:

1

n

n∑
i=1

ε̂i︷ ︸︸ ︷
(Yi − β̂0 − β̂1X1,i − · · · − β̂pXp,i) = 0

∂

∂b1
:

1

n

n∑
i=1

(Yi − β̂0 − β̂1X1,i − · · · − β̂pXp,i)X1,i = 0

...

∂

∂bp
:

1

n

n∑
i=1

(Yi − β̂0 − β̂1X1,i − · · · − β̂pXp,i)Xp,i = 0

This gives us p+ 1 linear equations to solve for our p+ 1 parameters. Computers
can solve these very quickly, but the explicit formulas for β̂0, β̂1, . . . , β̂p become
very cumbersome if we don’t use linear algebra notation.
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Estimation: Aside

Quickly, it is useful to note the following implication from the first order conditions
for β̂0, . . . , β̂p. Define ε̂i = Yi − β̂0 − β̂1X1,i − · · · − β̂pXp,i. Then

1

n

n∑
i=1

ε̂i = 0

1

n

n∑
i=1

ε̂iX1,i = 0

1

n

n∑
i=1

ε̂iX2,i = 0

...

1

n

n∑
i=1

ε̂iXp,i = 0
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Estimation: Asymptotic Distribution

Just as in single linear regression, however, the solutions for β̂0, . . . , β̂p depend on
the data. That is β̂0, . . . , β̂p are functions of our sample {Yi, X1,i, . . . , Xp,i}ni=1.

• If we collected a different sample {Yi, X1,i, . . . , Xp,i}ni=1, we would get
different values for our estimators β̂0, . . . , β̂p.

For hypothesis testing we would still like to know the (approximate) distribution of
our estimates β̂0, . . . , β̂p. This will be useful later on as we’d like to calculate
objects such as

Pr(|β̂1| > 5|β1 = −2).
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Estimation: Asymptotic Distribution

In order for the estimates β̂0, . . . , β̂p to have a stable asymptotic distribution and
to converge to the true parameters β0, . . . , βp, we need to make some (light)
assumptions about the underlying distribution of (Y,X1, . . . , Xp) from which our
sample is drawn.
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Estimation: Asymptotic Distribution

Assumptions needed for valid inference:

• Random Sampling: The data {Yi, X1,i, . . . , Xp,i} is independently and
identically sampled from the population distribution (Y,X1, . . . , Xp)

◦ Needed to make sure that we are making inferences on the correct population

• Rank Condition: The right hand side variables X1, . . . , Xp are not linearly
dependent, i.e we cannot write

a1X1 + a2X2 + · · ·+ apXp = 0

for some constants a1, . . . , ap with at least one ak 6= 0.

• Homoskedasticity: Var(ε|X1 = x1, X2 = x2, . . . , Xp = xp) = σ2
ε for all

possible (x1, . . . , xp).

And that’s it! Really only need Random Sampling and Rank Condition.
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Estimation: Asymptotic Distribution

Under the assumptions Random Sampling and Rank Condition we get the following
result for any β̂k, k = 0, 1, . . . , p.

Approximately, for large n:

β̂k − βk
σ̂βk/

√
n
∼ N(0, 1) ⇐⇒ β̂k ∼ N

(
βk, σ

2
βk/n︸ ︷︷ ︸

=Var(β̂k)

)
.

• The assumption Homoskedasticity simply changes the form of σ2
βk

and thus

it’s estimator σ̂2
βk

.

• Unlike in single linear regression we will not go over a general form for σ̂βk

◦ Typically, all that you need to know is that σ̂βk (or the standard error, σ̂βk/
√
n

or the variance σ̂2
βk
/n) will either be given to us directly or found in R output.

• In addition, we will be able to estimate the asymptotic covariance between
any two estimates β̂j , β̂k for j, k = 0, 1, . . . , p.
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Estimation: Asymptotic Variance

To consolidate notation, the variances and covariances are often presented as a
Variance-Covariance matrix. For example, when p = 2 the variance covariance
matrix looks like

Cov(β̂) =

 Var(β̂0) Cov(β̂0, β̂1) Cov(β̂0, β̂2)

Cov(β̂1, β̂0) Var(β̂1) Cov(β̂1, β̂2)

Cov(β̂2, β̂0) Cov(β̂2, β̂1) Var(β̂2)

 .

• Note that Cov(X,Y ) = Cov(Y,X) so this is a symmetric matrix

• Also note that Var(X) = Cov(X,X) which is why we sometimes just call this
the Covariance matrix.

• In general the Variance-Covariance matrix will be a (p+ 1)× (p+ 1) matrix
(one dimension for each of the slope coefficients and the intercept).
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Estimation: Asymptotic Variance

Question: What influences the asymptotic variance?

In order to get some intuition for this, we will go over a particular example when
p = 2. That is when we want to estimate the model

Y = β0 + β1X1 + β2X2 + ε.

In this case, we will be able to get some simple closed form expressions for σ2
β1

and
σ2
β2

.

• Will provide some insight into what drives the asymptotic variance
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Estimation: Asymptotic Variance

Before doing so, let’s review the correlation coeffecient. Recall that for two random
variables X1 and X2 the correlation coeffecient ρ12 is defined

ρ12 =
Cov(X1, X2)√

Var(X1)
√

Var(X2)
.

The correlation coeffecient is a measure of the linear dependence between X1 and
X2

• If ρ12 = 1 then X1 and X2 are perfectly linearly dependent, that is X1 = cX2

for some constant c 6= 0

• If ρ12 = 0 then X1 and X2 are have no linear dependence, that is
Cov(X1, X2) = 0.
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Estimation: Asymptotic Variance

With this in mind, the asymptotic variance (under homoskedasticity) σ̂2
β1

for β1 in
the linear model

Y = β0 + β1X1 + β2X2 + ε,

is given

σ2
β1 =

σ2
ε

(1− ρ212)σ2
X1

⇐⇒
√
n(β̂1 − β1) ∼ N(0, σ2

β1),

where ρ12 is the correlation coeffecient between X1 and X2.

Notice:

• As before Var(β̂1) = σ2
β1
/n is decreasing with n, β̂1 → β1 as n→∞.

• As before σ2
β1

is increase with σ2
ε and decreasing with σ2

X1

• However, now we see that the variance σ2
β1

is increasing also as ρ12 ↑ 1.
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β1
/n is decreasing with n, β̂1 → β1 as n→∞.

• As before σ2
β1

is increase with σ2
ε and decreasing with σ2

X1

◦ σ2
ε : If points are closer to the line it is easier to make out the line

◦ σ2
X1

: If points are more spread out, it is easier to make out the line

• However, now we see that the variance σ2
β1

is increasing also as ρ12 ↑ 1.
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Notice:

• As before Var(β̂1) = σ2
β1
/n is decreasing with n, β̂1 → β1 as n→∞.

• As before σ2
β1

is increase with σ2
ε and decreasing with σ2

X1

• However, now we see that the variance σ2
β1

is increasing also as ρ12 ↑ 1.

◦ Intuition: If X1 and X2 are highly correlated, it is difficult to parse out the
relationship of X1 on Y holding X2 constant.
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Estimation: Asymptotic Variance

To estimate σ2
β1

we can estimate each of it’s components.

σ̂2
β1 =

σ̂2
ε

(1− ρ̂212)σ̂2
X1

.

• For σ̂2
ε generate the estimated residuals ε̂i = Yi − β̂0 − β̂1X1,i − β̂2X2,i and

calculate the sample variance of the estimated residuals:

σ̂2
ε =

1

n

n∑
i=1

ε̂2i .

◦ Recall that by the first order conditions for β̂0, 1
n

∑n
i=1 ε̂i = 0 so that ¯̂ε = 0

• For σ̂2
X1

calculate the sample variance of X1

σ̂2
X1

=
1

n

n∑
i=1

(X1,i − X̄1)2.
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Estimation: Asymptotic Variance

To estimate σ2
β1

we can estimate each of it’s components.

σ̂2
β1 =

σ̂2
ε

(1− ρ̂212)σ̂2
X1

.

• To estimate ρ̂212 recall that

ρ12 =
Cov(X1, X2)

σX1σX2

=⇒ ρ̂12 =
Ĉov(X1, X2)

σ̂X1 σ̂X2

.

◦ We have already covered how to estiamte σ̂2
X1

. Estimating σ̂2
X2

follows the

same formula

σ̂2
X2

=
1

n

n∑
i=1

(X2,i − X̄2)2.

Then, take square roots σ̂X1 =
√
σ̂2
X1

and σ̂X2 =
√
σ̂2
X2

.

◦ To estimate the covariance note Cov(X1, X2) = E[(X1 − µX1 )(X2 − µX2 )] so

Ĉov(X1, X2) =
1

n

n∑
i=1

(X1,i − X̄1)(X2,i − X̄2).
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Estimation: Asymptotic Variance

Let’s see an example of this. Suppose we are interested in the joint effect of
smoking heavily and drinking heavily on liver failure.

That is let Y ∈ {0, 1} denote liver failure, X1 ∈ {0, 1} denote being a heavy
smoker, and X2 ∈ {0, 1} denote being a heavy drinker and suppose we want to
estimate the model

Y = β0 + β1X1 + β2X2 + ε.
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Estimation: Asymptotic Variance

After collecting a sample of size n = 64 we estimate σ̂2
ε = 0.25, σ̂2

X1
= 0.1, and

ρ̂12 = 0.5, where

ρ̂12 =
Ĉov(X1, X2)

σ̂X1 σ̂X2

.

Question: What is the standard error of β̂1?

Answer: Recall that the standard error is given σ̂β1/
√
n. Using the above we get

that

σ̂2
β1 =

σ̂2
ε

(1− ρ̂212)σ̂2
X1

=
0.25

(1− 0.25)0.1
=

10

3
.

The standard error is then σ̂β1/
√
n =

√
10/3/

√
64 ≈ 0.228
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Estimation: Asymptotic Variance

Now suppose that after collecting a sample of size n = 100 we estimate σ̂2
ε = 0.25,

σ̂2
X1

= 0.1. This time however, we estimate ρ̂12 = 0.75, where

ρ̂12 =
Ĉov(X1, X2)

σ̂X1 σ̂X2

.

Question: In this case, what is the standard error of β̂1?

Answer: Using the formula above

σ̂2
β1 =

σ̂2
ε

(1− ρ̂212)σ̂2
X1

=
0.25

(1− 0.5625)0.1
=≈ 5.714.

The standard error is then σ̂β1/
√
n ≈
√

5.714/
√

100 = 0.239.

Notice that the standard error is larger now than it was when n = 64, despite the
fact that our sample size has grown by about 50%!
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Inference: Introduction

Testing single hypothesis about the coeffecients of our regression or linear
combinations of coeffecients follows the same procedure.

If we recall, this procedure consists of constructing a test statistic of the form

t∗ =
Estimator− Null Hypothesis Value

Standard Error of Estimator
,

and then either computing a p-value or comparing the test statistic directly to a
quantile of the standard normal distribution.
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Inference: Single Coefficient Testing

Let’s first see how this looks like with a hypothesis test for single coeffecient.
Returning to the example from before let Y ∈ {0, 1} be an indicator the existence
of liver disease, X1 ∈ {0, 1} indicate whether or not someone is a heavy smoker,
and X2 ∈ {0, 1} indicate whether someone is a heavy drinker.

We want to know if being a heavy smoker is a significant predictor of having liver
disease after controlling for whether someone is a heavy drinker. To do so we
estimate the following model:

Y = β0 + β1X1 + β2X2 + ε.

We want to test the following hypothesis at level α = 0.05:

H0 : β1 ≤ 0 vs. H1 : β1 > 0.

• Recall that this essentially amounts to computing the probability that we
would observe our estimated value of β̂1 (or something even further from the
null/more positive) if the true value β1 = 0.

• Use the result that approximately for large n

β̂1 − β1
σ̂β1/

√
n
∼ N(0, 1).
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Inference: Single Coefficient Testing

Let Z ∼ N(0, 1). After collecting a sample of size n = 100 we estimate that
β̂1 = 0.03 and that σ̂2

β1
= 4. Given this we want to compute the p-value:

Pr(β̂1 > 0.03|β1 = 0) = Pr(β̂1 − β1 > 0.03−
=0︷︸︸︷
β1 )

= Pr

(
β̂1 − β1
σ̂β1/

√
n
>

0.03− 0√
4/
√

100︸ ︷︷ ︸
=t∗

)

= Pr(Z > 0.2) or, equivalently Pr(Z > t∗)

and reject the null hypothesis if this probability is less than α = 0.05.

Computing this probability using R we find that p = Pr(Z > 0.2) ≈ 0.42, since
this is larger than α = 0.05 we fail to reject the null hypothesis.
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Inference: Single Coefficient Testing

As in single linear regression, this is equivalent to checking whether the test
statistic t∗ is larger than z1−α where z1−α is such that Pr(Z ≤ z1−α) = 1− α so
that Pr(Z > z1−α) = α.

Understanding Check: Why is checking if t∗ > z1−α equivalent to checking if
p = Pr(Z > t∗) < α?

Since α = 0.05 using the command qnorm(0.95) in R we
find that z0.95 = 1.64. Computing the test statistic as before we find that

t∗ =
β̂1 − null hypothesis

σ̂β1/
√
n

=
β̂1 − 0√
4/
√

100
= 0.2.

Since t∗ = 0.2 ≤ 1.64 = z0.95 we fail to reject the null hypothesis that β1 ≤ 0. We
cannot reject the claim that heavy smoking has no association with having liver
disease after controlling for heavy drinking.
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Inference: Single Hypothesis Testing

We can see that this procedure is exactly the one we considered when we were
doing hypothesis tests in single linear regression. In fact we will now go over a
general framework for testing a single null hypothesis of a parameter θ whenever
we have a result of the form (approximately for large n):

θ̂ − θ
σ̂θ/
√
n
∼ N(0, 1)

where θ̂ is an estimator of θ and σ̂θ/
√
n is the standard error of θ̂.

Examples:
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θ̂ − θ
σ̂θ/
√
n
∼ N(0, 1)

where θ̂ is an estimator of θ and σ̂θ/
√
n is the standard error of θ̂.

Examples:

• By the central limit theorem

X̄ − µX
σ̂2
X/
√
n
∼ N(0, 1)
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We can see that this procedure is exactly the one we considered when we were
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general framework for testing a single null hypothesis of a parameter θ whenever
we have a result of the form (approximately for large n):

θ̂ − θ
σ̂θ/
√
n
∼ N(0, 1)

where θ̂ is an estimator of θ and σ̂θ/
√
n is the standard error of θ̂.

Examples:

• For a specific parameter βk in our multiple linear regression we have that

β̂k − βk
σ̂βk/

√
n
∼ N(0, 1)
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Inference: Single Hypothesis Testing

We can see that this procedure is exactly the one we considered when we were
doing hypothesis tests in single linear regression. In fact we will now go over a
general framework for testing a single null hypothesis of a parameter θ whenever
we have a result of the form (approximately for large n):

θ̂ − θ
σ̂θ/
√
n
∼ N(0, 1)

where θ̂ is an estimator of θ and σ̂θ/
√
n is the standard error of θ̂.

Examples:

• For a linear combination of regression coefficients λ = aβj + bβk and
λ̂ = aβ̂j + bβ̂k we have that

λ̂− λ
σ̂λ/
√
n
∼ N(0, 1).

We will go over how to estimate σ̂λ using the covariance matrix shortly.
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Inference: Single Hypothesis Testing

As before we have two standard procedure for testing the null hypotheses:
H0 : θ ≤ b, H0 : θ ≥ b, or H0 : θ = b. The first one involves computing p-values:

1. Compute the test statistic

t∗ =
θ̂ − b
σ̂θ/
√
n
.
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Inference: Single Hypothesis Testing

As before we have two standard procedure for testing the null hypotheses:
H0 : θ ≤ b, H0 : θ ≥ b, or H0 : θ = b. The first one involves computing p-values:

2. Compute the p-value, the probability that we would obtain our observed value

of θ̂, or something even further from the null hypothesis, if the null hypothesis
was correct

◦ If H0 : θ = b and H1 : θ 6= b compute

p = Pr(|Z| > |t∗|) = 2 Pr(Z > |t∗|).

◦ If H0 : θ ≤ b and H1 : θ > b compute

p = Pr(Z > t∗).

◦ If H0 : θ ≥ b and H1 : θ < b compute

p = Pr(Z < t∗).
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Inference: Single Hypothesis Testing

As before we have two standard procedure for testing the null hypotheses:
H0 : θ ≤ b, H0 : θ ≥ b, or H0 : θ = b. The first one involves computing p-values:

3. Reject the null hypothesis in favor of the alternative hypothesis if p < α.
Otherwise fail to reject the null hypothesis.
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Inference: Single Coeffecient Testing

As before this gives us two standard procedure for testing the null hypotheses:
H0 : θ ≤ b, H0 : θ ≥ b, or H0 : θ = b. The second one involves comparing the test
statistic to quantiles of the standard normal distribution:

1. Compute the test statistic or “t-statistic”

t∗ =
θ̂ − b
σ̂θ/
√
n
.
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Inference: Single Coeffecient Testing

As before this gives us two standard procedure for testing the null hypotheses:
H0 : θ ≤ b, H0 : θ ≥ b, or H0 : θ = b. The second one involves comparing the test
statistic to quantiles of the standard normal distribution:

2. For a given level α compute z1−α for a one sided alternative or z1−α/2 for a 2
sided alternative, where z1−α and z1−α/2 are such that

Pr(Z > z1−α) = α and Pr(Z > z1−α/2) =
α

2
.

These are called the 1− α and 1− α/2 quantiles of the standard normal
distribution, respectively.

◦ z0.9 ≈ 1.28

◦ z0.95 ≈ 1.64

◦ z0.975 ≈ 1.96

◦ z0.99 ≈ 2.32

◦ z0.995 ≈ 2.57
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Inference: Single Coeffecient Testing

As before this gives us two standard procedure for testing the null hypotheses:
H0 : θ ≤ b, H0 : θ ≥ b, or H0 : θ = b. The second one involves comparing the test
statistic to quantiles of the standard normal distribution:

3. Compare the test statistic t∗ to the quantile z1−α or z1−α/2.

◦ If H0 : θ = b and H1 : θ 6= b, reject if |t∗| > z1−α/2

◦ If H0 : θ ≥ b and H1 : θ < b, reject if t∗ < −z1−α
◦ If H0 : θ ≤ b and H1 : θ > b, reject if t∗ > z1−α

Otherwise, fail to reject the null hypothesis.
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Single Hypothesis Testing: Questions

Questions?
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Inference: Single Hypothesis Testing

Let’s see how this works when testing a linear combination of parameters.
Returning to our example let Y ∈ {0, 1} denote having liver disease, X1 ∈ {0, 1}
denote being a heavy smoker, and X2 ∈ {0, 1} denote being a heavy drinker. We
estimate the following linear model

Y = β0 + β1X1 + β2X2 + ε.
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Inference: Single Hypothesis Testing

We want to test at level α = 0.1 the null hypothesis that being a heavy smoker
and a heavy drinker makes you at most 10% more likely to develop heart disease
compared to someone who is neither a heavy smoker nor a heavy drinker. Using
our linear model Y = β0 + β1X1 + β2X2 we approximate

E[Y |X1 = 1, X2 = 1] = β0 + β1 + β2

− E[Y |X1 = 0, X2 = 0] = β0

= β1 + β2

So, we can state our hypotheses as

H0 : λ = β1 + β2 ≤ 0.1 vs. H1 : λ = β1 + β2 > 0.1.
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Inference: Single Hypothesis Testing

We will aim to test this hypothesis by using the procedure outline above. We will
construct λ̂ = β̂1 + β̂2. Because β̂1 and β̂2 are both (jointly) approximately normal
for large n we get the following result that

λ̂− λ
σ̂λ/
√
n
∼ N(0, 1).

where we can calculate σ̂λ/
√
n =

√
Var(λ̂). We can then use this to do

hypothesis testing following the steps above.

Aside: I know we have a lot of forms for the variance floating around. To reiterate,
basically we use something like σ2

θ to say that

√
n(θ̂ − θ) ∼ N(0, σ2

θ)

then after rearranging this we get that Var(θ̂) = σ2
θ/n so that σθ/

√
n =

√
Var(θ̂).
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Inference: Single Hypothesis Testing

After collecting a sample of size n = 100 of {Yi, X1,i, X2,i}100i=1 we find that

β̂0 = 0.05 β̂1 = 0.02 β̂2 = 0.15 =⇒ λ̂ = β̂1 + β̂2 = 0.17.

Question: How do we interpret λ̂?

We also estimate the following covariance
matrix:

Cov(β̂) =

β̂0 β̂1 β̂2 β̂0 0.05 0.25 0.16

β̂1 0.25 0.08 0.1

β̂2 0.16 0.1 0.36

Recall that Var(X + Y ) = Var(X) + Var(Y ) + 2 Cov(X,Y ). Using this we
calculate

Var(λ̂) = Var(β̂1) + Var(β̂2) + 2 Cov(β̂1, β̂2)

= 0.08 + 0.36 + 2 · 0.1 = 0.64

The standard error is then σ̂λ/
√
n =

√
Var(λ̂) = 0.8.
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Inference: Single Hypothesis Testing

So we have that λ̂ = 0.17 and σ̂λ/
√
n = 0.8. We would like to use this to test at

level α = 0.1 the hypotheses

H0 : λ ≤ 0.1 vs. H1 : λ > 0.1.

We will do so two ways, first using the p-value and second by directly comparing to
a critical value z1−α = z0.9.

First, construct the test statistic

t∗ =
λ̂− 0.1

σ̂λ/
√
n

=
0.17− 0.1

0.8
= 0.0875.

Now, compute the p-value. Since this is a one sided test with H1 : λ > 0.1 the
p-value is computed

Pr(Z > t∗) = 1− Pr(Z ≤ 0.0875) = 1- pnorm(0.0875) = 0.465

Since this p-value is larger than α = 0.1 we fail to reject the null hypothesis.
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Inference: Single Hypothesis Testing

Let’s try running this test directly by comparing the critical value t∗ to z1−α where
z1−α is such that

Pr(Z ≤ z1−α) = 1− α =⇒ Pr(Z > z1−α) = α.

Because H1 : λ > 0.1 and α = 0.1 we reject H0 : λ ≤ 0.1 if t∗ > z0.9.

To compute z1−α we run qnorm(0.9) which outputs 1.28. Since our test statistic
t∗ = 0.0875 is less than z1−α we again fail to reject this null hypothesis.

Manu Navjeevan (UCLA) Econ 103: Multiple Linear Regression I 43 / 67



Inference: Single Hypothesis Testing

Let’s try running this test directly by comparing the critical value t∗ to z1−α where
z1−α is such that

Pr(Z ≤ z1−α) = 1− α =⇒ Pr(Z > z1−α) = α.

Because H1 : λ > 0.1 and α = 0.1 we reject H0 : λ ≤ 0.1 if t∗ > z0.9.

To compute z1−α we run qnorm(0.9) which outputs 1.28. Since our test statistic
t∗ = 0.0875 is less than z1−α we again fail to reject this null hypothesis.

Manu Navjeevan (UCLA) Econ 103: Multiple Linear Regression I 43 / 67



Inference: Confidence Intervals

As before, we may also want to compute a 100(1− α)% confidence interval for θ,
where again we are in the setting where (approximately, for large n:)

θ̂ − θ
σ̂θ/
√
n
∼ N(0, 1).

As before, we want to include potential values in this interval that we are
“reasonably confident” that θ could be.

• That is values, b, for which we would not reject H0 : θ = b against an
alternative H1 : θ 6= b
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Inference: Confidence Intervals

Recall from the discussion above that we fail to reject H0 : θ = b in favor of the
alternative hypothesis H1 : θ 6= b if the absolute value of the test statistic is less
than z1−α/2∣∣∣∣ θ̂ − bσ̂θ/

√
n

∣∣∣∣ ≤ z1−α/2 =⇒ b ∈
[
θ̂ − z1−α/2σ̂θ/

√
n, θ̂ + z1−α/2σ̂θ/

√
n
]
.
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Inference: Confidence Intervals

So, our 100(1− α)% confidence interval for θ is given

θ̂ ± z1−α/2σ̂θ/
√
n.

We interpret this as being 100(1− α)% confident that the true value of θ lies in
the interval [

θ̂ − z1−α/2σ̂θ/
√
n, θ̂ + z1−α/2σ̂θ/

√
n
]
.
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Inference: Confidence Intervals

Let’s see an example of this. Suppose we are trying to examine the relationship
between log home sales price, square footage, and days on the market. To do so
we estimate the following regression equation

SALES = β0 + β1SQFT + β2DAY S + ε.
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Inference: Confidence Intervals

After collecting a sample of size n = 100 we obtain the following parameter
estimates

β̂0 = 2, β̂1 = 5, β̂2 = 8.

and estimated covariance matrix

Cov(β̂) =

β̂0 β̂1 β̂2 β̂0 2.5 1.6 0.5

β̂1 1.6 1.96 0.1

β̂2 0.5 0.1 1.9

Question: How would we compute a 99% confidence interval for β̂1?
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Inference: Confidence Intervals

To create a 99% confidence interval we first need to compute z1−α/2 = z0.995. To
do so, we use z0.995 = qnorm(0.995) = 2.57.

Next, we need to compute the standard error σ̂β1/
√
n =

√
σ̂2
β1
/n =

√
Var(β̂1).

From the covariance matrix we know that Var(β̂1) = 1.96 so that the standard
error is given

√
1.96 = 1.4.

Finally, we put these together to construct our confidence interval

β̂1 ± z1−α/2σ̂β1/
√
n = 5± 2.57 · 1.4 = [1.402, 8.598].

Question: Would we reject the null hypothesis H0 : β1 = 0 in favor of the
alternative H1 : β1 6= 0 at level α = 0.01?
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Confidence Intervals: Questions

Questions?
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Modeling Choices: Functional Forms

So far we have mainly covered regression specifications of the form

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε.

As we covered briefly in single linear regression, this functional form is restrictive
for a few reasons.
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Modeling Choices: Functional Forms

So far we have mainly covered regression specifications of the form

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε.

As we covered briefly in single linear regression, this functional form is restrictive
for a few reasons.

1. Marginal effect of any variable Xk on Y is modeled to be constant:

∂

∂Xk
Ŷ = βk.

◦ In reality, this assumption may be violated: marginal effect of education on
income may be diminishing after the college.
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So far we have mainly covered regression specifications of the form

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε.

As we covered briefly in single linear regression, this functional form is restrictive
for a few reasons.

2. Marginal effect of any variable Xk does not depend on any other variable Xj

∂

∂Xk∂Xj
= 0.

◦ In reality, this assumption may also be violated: marginal effect of experience
may depend on education levels
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Modeling Choices: Functional Forms

So far we have mainly covered regression specifications of the form

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε.

As we covered briefly in single linear regression, this functional form is restrictive
for a few reasons.

3. And in general, the relationship between Y and (X1, . . . , Xk) may not be
linear

◦ If Y ∈ {0, 1} and supp(X1, . . . , Xk) is quite large, a linear model may predict

Ŷ > 1 for some values of X.
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Modeling Choices: Functional Forms

In the single linear regression case we tried to account for these restrictions by
taking nonlinear transformations of our variables, i.e allowing for specifications like

Y = β0 + β1X
2 + ε.

Question: Why limit ourselves to just including a single transformation?

Now that we know how to do estimation and inference on linear regression models
with multiple right hand side variables, we will study two types of more advanced
modeling techniques

• Polynomial modeling, where we include higher order polynomial terms:
X1, X

2
1 , X

3
1 , . . ..

Y = β0 + β1X1 + +β2X
2
1 + ε.

• Interaction modeling, where we include terms like X1 ·X2

Y = β0 + β1X1 + β2X2 + β3X1 ·X2 + ε.

Of course, we can also always combine these two techniques!

Y = β0 + β1X1 + β2X
2
1 + β3X2 + β4X1 ·X2 + ε.
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Of course, we can also always combine these two techniques!
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Modeling Choices: Polynomial Modeling

Let’s first look at an example where we might want to use polynomial terms.
Suppose we want to estiamte the relationship between S, the square footage of a
house, D, the number of days the house has been on the market, and its final log
sales price, P .

We suspect that there are diminishing returns to square footage so we estimate the
following model:

P = β0 + β1D + β2S + β3S
2 + ε.

Questions:

• How does this model allow for diminishing marginal returns to square footage?

• What values of β3 would indicate diminishing marginal returns?

• How could we formally test for diminishing marginal returns?
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Modeling Choices: Polynomial Modeling

Suppose after collecting a sample of size n = 81 and fitting this model we estimate
β̂3 = −0.1 and the following covariance matrix:

Cov(β̂) =

β̂0 β̂1 β̂2 β̂3


β̂0 0.05 0.25 0.16 0.26

β̂1 0.25 0.8 0.1 0.3

β̂2 0.16 0.1 0.36 0.3

β̂3 0.26 0.3 0.3 0.16

Recall that the standard error is given σ̂β1/
√
n =

√
Var(β̂k)!

Let’s use this
information to test the null hypothesis H0 : β3 ≥ 0 against the alternative
hypothesis H1 : β3 < 0 at level α = 0.05. Our test statistic is given

t∗ =
β̂3 − 0√
Var(β̂3)

=
−0.1√
0.16

= −2.5.

Since −2.5 < −z1−α/2 = −z0.975 = −1.96 we are further from the null than would

be reasonably expected if β̂3 ≥ 0, so we reject in favor of H1 : β3 < 0.
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Modeling Choices: Interaction Modeling

Let’s see an example of interaction modeling. Suppose we are interested in the
effect of EDU , years of education, and EXP , years of experience, on INC, log
income.

We suspect that the returns to experience differ based on people’s level of
education, so we include and interaction term and estimate the following model:

INC = β0 + β1EXP + β2EDU + β3EDU · EXP + ε.

Questions:

• Given estimates β̂0, β̂1, β̂2, and β̂3, what is the estimated marginal return to
experience for a given level of education?

• How does this model allow for returns to experience to differ based on one’s
education level?

• What does the sign of β̂3 tell us about the estimated relationship between
returns to experience and level of education?
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Modeling Choices: Interaction Modeling

Suppose after collecting a sample of size n = 49 and fitting the model we estimate
β̂3 = 0.07 and the following covariance matrix.

Cov(β̂) =

β̂0 β̂1 β̂2 β̂3


β̂0 0.05 0.25 0.16 0.26

β̂1 0.25 0.8 0.1 0.3

β̂2 0.16 0.1 0.36 0.3

β̂3 0.26 0.3 0.3 0.25

We want to test whether returns to experience differs based on education level,
that is test H0 : β3 = 0 against H1 : β3 6= 0 at level α = 0.1. To do so, let’s
construct our test statistic

t∗ =
β̂3 − 0√
Var(β̂3)

=
0.07

0.5
= 9, 14.
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Modeling Choices: Interaction Modeling

Now, given t∗ = 0.14 let’s construct a p-value. For a two sided test, the p-value is
given

Pr(|Z| ≥ |t∗|) = 2 Pr(Z ≥ 0.14) = 2
(
1− Pr(Z ≤ .14)

)
= 2

(
1− pnorm(0.14)

)
= 0.88866

Since this p-value is larger than α = 0.1 we fail to reject this null hypothesis and
conclude that there is no evidence that returns to experience differ based on
education levels.
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Polynomial and Interaction Modeling: Questions

Questions?
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Modeling Choices: Managing Model Complexity

As we have seen in the last couple examples, adding polynomial and interaction
terms can allow us to build more flexible models that can better approximate the
“true” relationship between our explanatory and response variables.

Question: Why stop at one interaction term and a polynomial? Why not keep
adding terms?

• If we have enough data, this can be a good idea. Adding more terms can lead
to a more accurate model. However:

• Adding more terms can reduce the interpetability of our model

◦ How do we interpret a coeffecient on X2
1 ·X3

2?

• Adding more terms can lead to overfitting.
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Modeling Choices: Managing Model Complexity

Essentially, when we add more terms to our model, we are balancing two effects

1. Adding more terms can allow the model to better approximate the true
relationship between the outcome and the explanatory variable (Good).

◦ We can allow for more general marginal effects, etc.

◦ Often this is referred to as reducing the “bias” or reducing the “approximation
error”

2. On the other hand, adding more terms means that we have more parameters
that we need to estimate using the same amount of data. This means that our
coefficient estimates are, on average, further from their true values (Bad).

◦ This is often referred to as increasing the “variance” of our model, balancing
these two effects is referred to as managing the “bias-variance” tradeoff.
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Modeling Choices: Managing Model Complexity

In general our estimates are going to provide a better fit to our data than to the
true population, this problem is exacerbated when we start to add more terms.
Let’s see an example of this in practice.

On the left hand side we see a simple linear model, whereas on the right hand side
we see a 10 degree polynomial model.
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Let’s see an example of this in practice.

On the left hand side we see a simple linear model, whereas on the right hand side
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In general our estimates are going to provide a better fit to our data than to the
true population, this problem is exacerbated when we start to add more terms.
Let’s see an example of this in practice.

On the left hand side we see a simple linear model, whereas on the right hand side
we see a 10 degree polynomial model.

When taken to new data the polynomial model does much worse than the linear
one.
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Modeling Choices: Managing Model Complexity

How do we determine whether we are overfitting? A first guess might be to take
the approach we took to model evaluation in Single Linear Regression and stop
adding terms when our R2 falls. Just like in Single Linear Regression we can define

R2 =
SSR

SST
= 1− SSE

SST
.

where as before SSR =
∑n
i=1(Ŷi − Ȳ )2, the sum of squares due to regression,

SST =
∑n
i=1(Yi − Ȳ )2, the total sum of squares, and SSE =

∑n
i=1 ε̂

2
i is the sum

of squared errors.
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Modeling Choices: Managing Model Complexity

Problem: The R2 will fall as long as we keep adding terms.

Why: To see this let’s use the representation R2 = 1− SSE
SST

. Across all models,
SST =

∑n
i=1(Yi − Ȳ )2 will remain the same. However, the SSE will keep falling as

we add more terms.
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Modeling Choices: Managing Model Complexity

Why does the SSE fall as we add more terms? Note that we essentially choose our
estimated parameters to minimize the SSE

β̂0, β̂1 = arg min
b0,b1

1

n

n∑
i=1

(Yi − b0 − b1X1,i︸ ︷︷ ︸
ε̂i

)2

β̂0, β̂1, β̂2 = arg min
b0,b1,b2

n∑
i=1

(Yi − b0 − b1X1,i − b2X2,i︸ ︷︷ ︸
ε̂i

)2

When using a third term, we could always recover the SSE from using two terms
by keeping β̂0 and β̂1 the same and setting β̂2 = 0. The SSE mechanically must
(weakly) fall when adding an additional term.

Since

R2 = 1− SSE

SST
,

this means that R2 also must increase as we add more terms.
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Modling Choices: Managing Model Complexity

For this reason, when evaluating multiple linear regression model we often use the
adjusted R-squared. The adjusted R2 for a model with p terms and an intercept is
given:

adj. R2 = 1− SSE/(n− p− 1)

SST/(n− 1)
.

Comments:

• The adjusted R2 penalizes model complexity, it falls as p increases.

• A first order approach to determining what model to use would be to add a
potential (carefully thought through) term only if the adjusted R2 increases
after adding the term.

◦ We will go over more formal approaches in the next lecture.

• Adjusted R2 will be reported by most statistical software when running a
multiple linear regression model.
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Managing Model Complexity: Questions

Questions?
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